
ON GAS FLOW IN LAVAL NOZZLES 

(0 QAZOVYKE TECBENIIAKA V SOPLAKH LAVALIA) 

PMM Vo1.22, No.3, 1958, pp.396-398 

0.6. RYZHOV 

(Moscow) 

(Received f5 February 1958) 

Let us consider the flow of an ideal gas in the neighborhood of the sur- 
face of transition from subsonic to supersonic flow in a Lava1 nozzle, 
which has two planes of symmetry. The straight line of intersection of 
these two planes we will call the axis of the nozzle, while the point of 
intersection of the nozzle axis with the sonic transition surface, to 
which the axis is normal, is the center of the nozzle. Making the origin 
of cylindrical coordinates X, r, 0 coincident with the center of the 
nozzle and choosing the x-axis to be coincident with the axis of the 
nozzle, let us write the equation, which determined the gas flow in the 

neighborhood of the surface of transition, in the form 
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where 4 is the potential, such that 

(1) 

where vZ, vz, ~6 are perturbations, in the x, r, 8 directions, on the 
velocity which in magnitude is equal to the critical velocity a* and is 
directed along the nozzle axis; K is Poisson’s adiabatic index. 

In order to get shock-free solutions of the nozzle, let us consider 
only analytical solutions of the equation (1). In the case of plane and 
round nozzles the desired solutions have the form: [ 2,3 1 

In the general 
motion (1) in the 
into equation (1) 

'p = r4fK, a), 4 = x/r2 (3) 
case we will look for solutions of the equation of 
foregoing similarity form. Substituting formulas (3) 
we get: 

(4) 

Since we are interested only in analytical solutions of equation (11, 
the desired solutions of equation (41 are of the form: 
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f = $ P + g1 w g + g2 (84) (5) 

Using equation (4), we will get the following expressions for func- 
tions gi(8) and g3 (8): 

where A, a and l are arbitrary constants; in what follows we will take 

A > 0 everywhere. From formulas (21, (3), (5) and (61 we find the ex- 
pressions for the potential and the velocity components of the flow: 

x-l-l 

a* (7) 

x+1 
- % = 2nA2xr sin 24 + A3 g sin 26 - 4m sin 49 r3 

a. i 

In the above solution the functions v and u are even with regard to 
8, the function v@ is odd. Hence it follows thai formulas (7) describe 
the flow in the neighborhood of the surface of transition from subsonic 
velocities to supersonic velocities in nozzles whose cross-section has 
two axe8 of symmetry. 

Assuming that n = M = 0 in formulas (7), we obtain a stream in a round 
Lava1 nozzle; choosing n = t l/4, a = f/192, we have the flow in a plane 
nozzle [ 1-3 I. 

Let us consider now the form of the surface of transition through the 
velocity of sound, which is obtained from the equality vX = 0. Hence we 
have, using the second of formulas (71, 

Going over from the cylindrical coordinate system to Cartesian coordi- 
nates by substituting z = r cos 8, y = r sin 6, we obtain the equation of 
the transition surface in the form 

- .=a~;++~+++ (3) 

From equation (81 it follows that for 1 TV\ < 114 the surface of transi- 
tion will be an elliptical paraboloid, for 1 nl = 114 it is a parabolic 
cylinder, for 1 n 1 > l/4 a hyperbolic paraboloid. From relations (7) it is 
easy to see that it is possible to give the magnitude of the velocity of 
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the stream, and, consequently, the form of the transition surface corres- 
ponding to flow in plane and round nozzles even though the flow as a whole 
is not given. We also note that in the general case the surfaces vr = Q 
ve = Q may not coincide; the former is described by the equation 

4 = _ A ‘!I3 - ‘13 n Cos 28 + 4m ~0s 48 

‘I3 - 2n cos 28 

the latter is given by 
- n sin 24 4m sin 49 t=A 1/6 + 

2n sin 28 

Let us find the equations of the characteristic surfaces passing 
through the center of the nozzle. ‘fhe characteristic surfaces are described 
by the first order differential equation 

which can be formulated in the form grad’ x = a$/&. Hence it follows 
immediately that as the characteristic surfaces approach the surface of 
transition through the velocity of sound they become perpendicular to the 
axis of the nozzle. Therefore the characteristic surfaces touch the sur- 
face of transition at the point x = 0, r = 0. We will consider only those 
characteristic surfaces which have the same planes of symmetry as the 
nozzle itself, which pass through its center and do not have breaks. For 
their determination we will assume: 

Z = x (8) r2 (10) 

Substituting expression (10) into equation (9). we obtain a first 
order ordinary differential equation for the function x(8): 

(g)” = - 4X2+AX+$-A2ncos28 

For the characteristic surfaces under consideration the derivative 

dX/de must be equal to zero for 8 = Q and 8 = % n , because in this case 
a function x(r. @, determined in the first quadrant of the plane 8, can 
be continued symmetrically, as follows from equation (111, into the re- 
maining three quadrants without discontinuities of the first derivative 
with respect to 8. This can be obtained only for 1 n 1 < 5/1g. The desired 
solutions of equation (11) can be formulated as follows: 

where 4 = dm, 4 = qm. Four characteristic equations, 
touching the sonic transition surface at the center of the nozzle, can 
be now written In Cartesian coordinates in the form 
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2= ; A (I & A,) y* + $ A (1 1 Ad a2 

s-g, (lFA,)ya+$A(ff 
w-4 

Ad .a= 

For / n 1 < l/4 the,first two of equations (12) 
of elliptical paraboloids, extending in opposite 
nozzle axis, while the second two are hyperbolic 
equations (12) give 

c0nstitut.e the equations 
directions along the 
paraboloids. For n = l/4 

1 
x = T Ay* + $ AS, z=-;Ay2+-2_Aa? - $- Aya, 

1 
z!~ x= T Ay2 

For n = - l/4 we obtain correspondingly: 

x = f Aya + ; AS, 
1 

z = - Az2, 
2 

x = - $ AZ?, r=$Ay=J --2:_ AS 

Thus, for ( n\ = 114 two of the surfaces under consideration constitute 
parabolic cylinders, one is an elliptical paraboloid and one a hyperbolic 
paraboloid. For 1 n 1 > l/4 two of the characteristic surfaces, given by 
formulas (121, are elliptical paraboloids, extending along the nozzle 
axis in the direction of increasing values of X, the other two are hyper- 
bolic paraboloids. For 1 n 1 = 5/16 elliptical and hyperbolic paraboloids 
coincide in pairs. we may note that the first of the solutions (12) 
describes a disturbance caused by a needle situated on the axis of the 
nozzle and touching with its point the surface of transition; in this 
case the Mach cone transforms into an elliptical paraboloid. 

For l/4 < n < 5115 the two elliptical paraboloids given by equations 
(12) are tangent to each other along a curve lying in the plane z = 0, 
Between these paraboloids it is possible to construct a family of charac- 
teristic surfaces which have breaks on the z-axis, in cross-sections 
x = constant, and which touch along the indicated tangent curve of the 
characteristic paraboloids. For - 5116 < n < - l/4 analogous characterist 
surfaces will have breaks on the y-axis in cross-sections x = const. 
Characteristic surfaces for 1 l/4 1 < n < ( s/16 1 , situated downstream, 
which are tangent in the center of the nozzle to the surface of transi- 
tion and which do not have any other common points with the outside 
characteristic paraboloid, except the point x = 0, r = 0, vanish. For 
1 n ( > 5/16, tb ere does not exist a characteristic surface which does not 
touch the sonic transition surface anywhere, except at the center of the 
nozzle, and which extends downstream (i.e. corresponding to the limiting 
Mach ‘cone” with apex at the nozzle center). The latter statements are 
easily obtained if equation 15) is written in the form: 

,’ ii = */Ax+ A* (~---n~~~2a)r~--(~-) -- --.- 
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and the expression under the radical in this formula is analysed. 

In conclusion, I take this opportunity to express my deep gratitude 
to S.A. Christianovitch for his discussion of the subject and the results 
of this work. 
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